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Abstract

Background: Currently, prostate cancer (PCa) diagnosis relies on the hu-

man analysis of prostate biopsy Whole Slide Images (WSIs) using the Gleason

score. Since this process is error-prone and time-consuming, recent advances

in machine learning have promoted the use of automated systems to assist

pathologists. Unfortunately, labeled datasets for training and validation are

scarce due to the need for expert pathologists to provide ground-truth la-

bels.
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Method: This work introduces a new prostate histopathological dataset

named CrowdGleason, which consists of 19,077 patches from 1,045 WSIs

with various Gleason grades. The dataset was annotated using a crowd-

sourcing protocol involving seven pathologists-in-training to distribute the

labeling effort. To provide a baseline analysis, two crowdsourcing methods

based on Gaussian Processes (GPs) were evaluated for Gleason grade predic-

tion: SVGPCR, which learns a model from the CrowdGleason dataset, and

SVGPMIX, which combines data from the public dataset SICAPv2 and the

CrowdGleason dataset. The performance of these methods was compared

with other crowdsourcing and expert label-based methods through compre-

hensive experiments.

Results: The results demonstrate that our GP-based crowdsourcing ap-

proach outperforms other methods for aggregating crowdsourced labels (κ =

0.7048±0.0207) for SVGPCR vs.(κ = 0.6576±0.0086) for SVGP with major-

ity voting). SVGPCR trained with crowdsourced labels performs better than

GP trained with expert labels from SICAPv2 (κ = 0.6583±0.0220) and out-

performs most individual pathologists-in-training (mean κ = 0.5432). Addi-

tionally, SVGPMIX trained with a combination of SICAPv2 and CrowdGlea-

son achieves the highest performance on both datasets (κ = 0.7814± 0.0083

and κ = 0.7276± 0.0260).

Conclusions: The experiments show that the CrowdGleason dataset can be

successfully used for training and validating supervised and crowdsourcing

methods. Furthermore, the crowdsourcing methods trained on this dataset

obtain competitive results against those using expert labels. Interestingly,

the combination of expert and non-expert labels opens the door to a future
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of massive labeling by incorporating both expert and non-expert pathologist

annotators.

Keywords: Computational pathology, Crowdsourcing, Prostate cancer,

Gleason grade, Gaussian processes, Medical image analysis

1. Introduction

Prostate cancer is a prevalent cancer and the fifth leading cause of cancer-

related deaths worldwide [1]. Timely and precise diagnosis is crucial for

effective treatment and reducing mortality rates [2]. Currently, the gold

standard for diagnosis and prognosis is to analyze a biopsy of prostate tissue

by the Gleason grading (GG) system which assesses the cancer stage and

aggressiveness based on gland morphology. However, the assessment of GG

is inherently subjective with high intra- and inter-observer variability [3, 4].

Computer-Aided Diagnosis (CAD) systems assist pathologists and aim to

minimize human variability in decision-making. These systems utilize WSIs

and computer vision and machine learning (ML) algorithms to detect and

grade cancerous regions. The main bottleneck in training and validating ML

methods for GG prediction is the scarcity of large-scale public datasets [5].

Creating these datasets is costly and time-consuming and, together with the

scarcity of expert pathologists, explain why there are few annotated datasets

and even fewer public datasets.

Crowdsourcing has emerged as a cost-effective and efficient method for

labeling histopathological datasets by leveraging a large pool of annotators

with varying levels of expertise [6, 7]. While crowdsourcing has shown success

in tasks like nuclei detection [8] and cancer cell identification [9], the labels
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generated are frequently noisy, limiting their direct application to complex

tasks such as GG. To address this challenge, probabilistic models like GPs

have become popular [10, 11]. GPs for crowdsourcing have demonstrated

excellent performance in various tasks [12, 13, 14] and have been successfully

applied in histopathological image classification studies, including breast can-

cer [15, 16] and skin cancer detection [17]. These methods offer competitive

performance compared to methods trained with expert labels, indicating that

crowdsourced labeling of histopathological images could be a feasible option

for cancer classification with minimal reliance on expert pathologists. Re-

garding GG classification, there are no previous studies involving non-expert

annotators. However, it has been shown that learning from the opinion of

multiple expert pathologists, despite high inter- and intra-observer variabil-

ity, results in strong performance when effectively modeling this variability

[18, 19].

The objective of this work is twofold. First, we present and make publicly

available the first prostate dataset labeled by non-experts for GG predic-

tion. Second, we explore the learning from crowds framework with this novel

dataset, assessing and analyzing two state-of-the-art methods based on GP

for crowdsourcing. This paper also demonstrates the viability of integrating

this new dataset with existing datasets containing expert labels, to create

a larger and more diverse dataset. Our experiments indicate that the noisy

non-expert labels from the presented dataset can improve previous models

in the literature. Below, we outline our contributions in detail:

• Introduction of new crowdsourcing protocol for the annotation of patches

from WSIs, outlined in Fig. 1, which cheapens and speeds up the label-
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Figure 1: Dataset creation and annotation protocol. We collect 1,045 WSIs, of which 783

are used exclusively for crowd labeling and 262 for crowd and expert labeling. We divide

all WSIs into patches and distribute them among the non-expert annotators to obtain the

training set. We create a curated test set with patches where the experts and majority of

the non-experts agree.
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ing process by dramatically reducing the intervention of expert pathol-

ogists.

• Creation of a new dataset, called CrowdGleason, comprising 19,077

patches from 1,045 WSIs of PCa with different GG. This dataset was

annotated by seven pathologist-in-training without expert supervision.

Note that not all annotators labeled all patches. To the best of our

knowledge, this is the first PCa dataset annotated by non-expert pathol-

ogists.

• Development of a curated test set annotated by each pathologist-in-

training and two expert PCa pathologists to evaluate automated ML

methods and assess bias, expertise, and discrepancies between partici-

pants.

• Comprehensive experiments to evaluate two GP-based methods for GG

prediction: SVGPCR [7] and SVGPMIX [14]. SVGPCR learns from the

CrowdGleason dataset, while SVGPMIX combines expert labels from

the public SICAPv2 [20] dataset with the CrowdGleason dataset. Re-

sults demonstrate that these GP-based crowdsourcing methods outper-

form popular techniques for label aggregation, with SVGPMIX achiev-

ing the best performance in both datasets.

The remainder of the work is organized as follows. Section 2 describes re-

lated work. Section 3 presents the CrowdGleason dataset and its annotation

protocol. Section 4 describes the experimental setup and the methods eval-

uated. The experimental results are shown in Sect. 5, and Sect. 6 discusses

them. Finally, Sect. 7 presents the conclusions and future work.
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2. Related work

Public datasets are essential to develop precise ML methods for GG pre-

diction. Hence, Sect. 2.1 delves into the current publicly available PCa

datasets and Sect. 2.2 provides an overview of the core work of crowdsourcing

and its applications in the context of histopathology.

2.1. Public PCa histopathological datasets

The current publicly available PCa histopathological datasets have been

typically created by staining tissue biopsies with hematoxylin and eosin

(H&E) and scanning them as WSI for histopathological examination. In clin-

ical practice, a WSI usually contains one or a few tissue samples. The use of

Tissue Micro Arrays (TMAs) allows many tissue samples to be arranged on

a grid and processed simultaneously to obtain a single slide. These datasets

are labeled at pixel, patch, or WSI levels. The labeling process at pixel level

consists of manually delineating tumor areas and assigning GG classes. This

meticulous procedure provides comprehensive tumor information but it is

time-consuming. In WSI level labeling, pathologists assign a label to the en-

tire image without specific tumor location information. Patch level labeling

divides WSIs into small regions, named patches, and a label is assigned to a

selected set of patches, thus reducing the need to examine the entire WSI.

We briefly examine popular public datasets for GG prediction, includ-

ing Arvaniti, SICAP, GLEASON2019, and PANDA. Table 1 provides an

overview of these datasets and our proposed CrowdGleason. Arvaniti et al.

[21] dataset comprises TMAs annotated at pixel level by an expert pathol-

ogist, while SICAPv1 [11] and SICAPv2 [20] datasets offer pixel-level anno-

7



Table 1: Publicly available datasets for GG prediction. MA refers to multiple annotators.

Biopsy # Samples Annotations Experts MA

Arvaniti [21] TMA 895 Pixel-level Yes No

SICAPv1 [11] WSI 79 Pixel-level Yes No

SICAPv2 [20] WSI 182 Patch-/pixel-level Yes No

GLEASON19 [18] TMA 331 Pixel-level Yes Yes

PANDA [22] WSI 12,625 WSI-/pixel-level Yes No

CrowdGleason (proposed) WSI 1,045 Patch-level No Yes

tations on WSIs. The WSIs were downsampled at 10× magnification and

divided into patches of 5122 pixels with 50% overlap obtaining patch-level an-

notations. To our knowledge, SICAPv2 is the largest fully annotated dataset

at patch level in the literature.

Challenges, such as Gleason2019 and PANDA, have been a popular way

of promoting research in GG prediction by providing benchmark datasets for

evaluating ML algorithms. The Gleason2019 challenge [18] dataset provides

TMA images annotated by a panel of 5 expert pathologists, and the PANDA

Challenge [22] dataset includes WSIs annotated at the WSI level by consensus

among a large panel of highly experienced expert pathologists, with some

samples annotated at pixel level.

2.2. Crowdsourcing

To the best of our knowledge, all works for GG prediction from patches

addressed the problem with ground-truth labels provided by either a single

expert or a panel of expert pathologists. Crowdsourcing presents an oppor-

tunity to scale datasets by engaging non-expert annotators in computational
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pathology-related tasks [8]. Various studies explored the use of labels from

non-expert annotators for tasks like mitosis detection [23] or histopatho-

logical image classification [24]. Previous works [25, 26] have demonstrated

promising results in the field of histopathology using crowdsourcing, but they

required strong supervision from senior pathologists to review the annota-

tions provided by the crowd. To reduce the need for expert supervision,

label aggregation techniques [27] have been developed to automatically cu-

rate crowdsourcing labels, enabling the creation of datasets suitable for ML

without expert supervision. Various label aggregation methods have been

proposed, including majority voting (MV) and more elaborated methods that

consider the biases of the different annotators, yielding a better-calibrated

set of training labels [7]. They include Dawid-Skene (DS) [28], GLAD [29]

and MACE [30] models.

Recent studies show that jointly learning ground-truth labels, annotator

expertise, and the latent classifier leads to superior performance [31]. Models

like SVGPCR [7] have successfully combined sparse GPs with a crowdsourc-

ing probabilistic framework, demonstrating competitive performance to GPs

trained with expert labels in breast cancer detection from histopathological

images [32]. Moreover, SVGPMIX method [14] is the first probabilistic ap-

proach based on GPs for fusing expert and non-expert labels, leveraging the

confidence offered by expert labels and the larger volume of data provided

by non-expert annotators. To the best of our knowledge, this model has not

yet been applied in the biomedical domain.
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3. CrowdGleason dataset

The dataset presented in this paper, named CrowdGleason, has been par-

tially annotated by different pathologists in-training with varying degrees of

expertise. A subset of the dataset was also annotated by expert pathologists,

which helped to obtain a test set.

3.1. Data acquisition and annotation by expert pathologists

To create CrowdGleason, 1,045 WSIs of H&E-stained prostate tissue

samples from different patients, were collected by medical experts from the

archive of the Hospital Universitario San Cecilio (HUSC) in Granada. All

WSIs were digitally scanned at 40×magnification factor. Two expert pathol-

ogists exhaustively annotated 262 of those 1,045 WSIs at the pixel level.

Each image was annotated by only one of the pathologists independently,

using the online application described in [20]. Experts thoroughly marked

all pathological areas with their GG and delineated artifacts.

3.2. Patch extraction

All WSIs were divided into patches of size 2048×2048 pixels at a magnifi-

cation of 40x, without overlapping. This size and magnification were selected

in agreement with expert pathologists to provide sufficient context and detail

to facilitate the identification of cancerous lesions. Patches containing less

than 20% of tissue were discarded, as they do not contain enough tissue to

make an accurate diagnosis. Tissue presence was detected by thresholding

the magenta channel by the Otsu method [33]. From images with patho-

logical areas marked by the experts, we selected patches containing at least
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15% of pathological tissue, labeled with GG of the area marked by the ex-

pert: Gleason grade 3 (G3), Gleason grade 4 (G4), or Gleason grade 5 (G5).

Patches containing more than one pathological area were discarded since it

was not possible to assign a single label to the patch. From images labeled

as non-cancerous (NC) by the expert pathologist, on the other side, we could

use all tissue to extract patches. To reduce the number of candidate patches,

we discarded patches having less than 30% of tissue. A total of 4573 patches,

which form the so called expert-labeled set, were obtained from the 262 images

annotated by experts.

For the remaining 783 images not annotated by expert pathologists, a

large number of patches without ground-truth labels were extracted to be

annotated by non-expert pathologists at a later stage. To expedite the label-

ing process, we reduced the number of patches. As gland structure is crucial

in PCa diagnosis, we chose patches with a substantial presence of nuclei as

representative of tissue with glands. Since nuclei stain with hematoxylin,

which is prominent in the cyan component, to extract patches rich in nuclei,

we selected those patches where at least 40% of the tissue’s pixels had a high

cyan value. Still the number of patches was overwhelming. Due to the huge

class imbalance in histopathological data, with large areas of non-pathological

tissue, and cancerous tissue that is only sparsely represented, to select a set

of patches representing the different PCa grades, we proceeded as follows.

We trained the classification algorithm in [34] that combines semi-supervised

and multiple instance learning on the public PANDA dataset for PCa classifi-

cation, following the successful setting in [34]. Note that the PANDA dataset

is labeled at the WSI level; hence, standard supervised learning techniques
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Table 2: Metrics for the patch selection algorithm in a small set of patches extracted from

the expert-labeled set.

Accuracy F1 score Kappa

0.732 0.648 0.606

cannot be used. Although segmentation masks are provided for some images,

they can be only used to develop strategies for selecting the most significant

subsamples of the images [35]. The algorithm in [34] uses an EfficientNet-B5

neural network architecture [36] that was trained with a learning rate of 0.01

for 10 epochs on the classes NC, G3, G4, and G5. To validate this approach,

we classified a small set of patches extracted from the expert-labeled set.

Note that these patches were only used to obtain the metrics shown in Ta-

ble 2 and were not used in model training. These figures of merit show that

the method is good enough to distinguish patches from the different classes.

Using the learned model, the patches from non-annotated WSIs were clas-

sified in the class with the highest probability, selecting a total of 16,151

patches. This collection constitutes a roughly balanced set that will serve

as training set of our study. Since this set was designed for annotation by

non-expert pathologists, the labels provided by the classification algorithm

were discarded after patch selection and not further used in this study.

3.3. Annotation by non-expert pathologists

Seven pathologists in-training with different expertise levels participated

in the annotation of the dataset. Two of them were in their fourth year of

medical residency, two in their third, two in their second, and one was a

first-year medical resident. Following the Spanish Official Specialist Train-
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Table 3: Distribution of labels in the expert-labeled set labeled by each resident pathologist

and the expert. We refer to each annotator as A#, where the number is an anonymized

ID.

Class A1 A2 A3 A4 A5 A6 A7 Expert Total

NC 1891 2290 2968 2983 2941 2868 389 2438 14439

G3 1024 1267 507 601 763 693 1402 1498 5233

G4 1155 674 808 663 413 666 1513 449 4737

G5 503 341 281 308 431 317 1074 188 2752

Total 4573 4572 4564 4555 4548 4544 4378 4573 27161

ing Program in Anatomic Pathology, third and fourth-year pathologists in-

training have completed specific training in the subspecialty of Uropathology,

which includes the study of the prostate, with an approximate duration of

2-3 months. First and second-year students do not have specific training in

this subspecialty. In collaboration with expert pathologists, we designed an

annotation protocol based on the well-known PCa grading of the Gleason

Score, originally introduced by Donald F. Gleason [37] for grading prostatic

carcinoma based solely on the architectural pattern of the tumor. Non-expert

pathologists were instructed to label as NC, G3, G4, or G5 the patches in

the expert-labeled and training sets, described in the previous section, rather

than thoroughly examine the WSI and exhaustively delineate the tumor ar-

eas. Patches that could not be labeled due to the presence of artifacts,

blurriness, tissue from other organs, folded tissue, etc. have been labeled as

“Other”. Patches with more than one GG, which have not a clear label, have

also been labeled as “Other”.
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Figure 2: Examples of patches and annotations by each participant.

All pathologists in-training labeled the 4,573 patches in the expert-labeled

set. Table 3 presents a summary of the distribution of the labels in this set.

Note that some patches were labeled as “Other” by some residents and,

hence, the total of each column may not add up to the total number of

patches. An example of patches and the annotations provided by the crowd

and the experts is shown in Fig. 2. To minimize the influence of inherent

pathologist variability in labeling, we created a curated test set where the

ground-truth label for each sample was established by consensus between the

majority of pathologists in-training and the expert pathologist. Using this

curated set, whose distribution of samples for each class is shown in Table 4,

we will estimate the degree of reliability of each resident as well as evaluate

ML methods. Recall that expert intervention has only been necessary for

the creation of the curated test set, not for the training set.

The 16,151 patches in the training set were labeled, on average, by more

than two resident pathologists, with each pathologist in-training labeling

approximately 5,000 patches. Table 5 summarizes the training set. Patches
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Table 4: Distribution of patches in each class of the curated test set.

NC G3 G4 G5 Total

2157 548 164 57 2926

Table 5: Distribution of patches in the training set labeled by each resident pathologist.

We refer to each annotator as A#, where the number is an anonymized ID.

Class A1 A2 A3 A4 A5 A6 A7 Total

NC 2165 2747 3659 4186 3476 3452 866 20551

G3 1462 1618 604 149 1024 667 682 6206

G4 995 510 544 580 405 641 2580 6255

G5 400 205 140 111 250 337 677 2120

Total 5022 5080 4947 5026 5155 5097 4805 35132

were provided to the residents in 4 batches of approximately equal size over

a 6-month period.

Finally, as a post-processing step, the patches of both the training set

and the curated test set were downsampled using bicubic interpolation to

a size of 512 × 512 pixels. This is equivalent to obtaining the patches at

a magnification factor of 10×, and it was necessary to accommodate the

patches into the GPU memory.

In summary, the CrowdGleason consists of a crowdsourcing annotated

training set with 16,151 patches of size 512× 512 extracted from 783 WSIs,

annotated by one or more of the seven pathologists in-training, and a cu-

rated test set with 2,926 patches of size 512× 512 extracted from other 262

WSIs, annotated by expert pathologists and all the pathologists in-training.
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Ground-truth labels for the curated test set were obtained by consensus be-

tween the expert pathologists and the majority of the pathologists in-training.

3.4. Ethical Consent and Data Availability

The Research Ethics Committee of the Universidad de Granada approved

the study with code 4096/CEIH/2024 as part of the project P20 00286,

funded by FEDER/Junta de Andalućıa, following the principles established

in international and national biomedical international and national legisla-

tion in the field of biomedicine, bioethics and bioethics, as well as the rights

derived from the protection of personal data.

The complete CrowdGleason dataset will be available in Figshare upon

acceptance of the paper.

4. Materials and Methods

Datasets. We present and utilize the dataset, described in Sec. 3.1, and

combine it with the public dataset SICAPv2 [20]. We normalize both datasets

via the BKSVD method [38], and use them for training and evaluation to

demonstrate the utility of the proposed CrowdGleason dataset with respect

to another popular dataset in the literature. Our approach also allows for

the generalization ability of the classifiers on an external cohort. The task is

to learn the GG of each patch, i.e. to classify the patches as ‘NC’, ‘G3’, ‘G4’

and ‘G5’.

Feature extraction. A reduced set of features is extracted and used

as input to the GP-based methods. For this, we utilize the 18-layer variant

of ResNet [39], i.e., ResNet18, pre-trained on Imagenet and fine-tuned on

SICAPv2. We use the output of the last convolutional layer as a feature
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extractor. Since SICAPv2 is the largest publicly available PCa dataset with

patch labels, we assume that the learned feature extractor generalizes well to

other datasets. The experimental results will validate this assumption. We

utilize these 512-dimensional feature vectors as input to the GP classifiers

and also report the results of the end-to-end training of ResNet18 for com-

parison. We perform five independent runs of all the presented experiments,

including the mean performance and 95% confidence interval (CI). Note that

for each run, we also run the feature extractor to obtain a different set the

features and ensure the robustness of the whole pipeline proposed in this

work. To train the network, we use the SGD optimizer with a learning rate

of 10−3, a momentum of 0.9, and a batch size of 32 patches. Common data

augmentation transformations, such as horizontal and vertical flips, blur, and

brightness, contrast, hue, and saturation variations, are applied to the train-

ing dataset. The CNN is implemented using Pytorch 2.0.1 and is run on an

NVIDIA GeForce RTX 3090 GPU.

Supervised Learning: Gaussian Processes. We use the features

extracted by ResNet18 and the ground-truth label as inputs of a stochas-

tic variational Gaussian process (SVGP) model to learn the GG from the

SICAPv2 dataset. SVGPs are scalable GP models that use variational infer-

ence to approximate the posterior distribution. See a detailed description in

[40] and an intuitive review in [32]. We utilize a squared exponential kernel

to compute the correlation matrix. We initialize the kernel hyperparame-

ters, lengthscale and variance, to 2. We train the SVGP for 50 epochs and

save the parameters that obtain the best Cohen’s Quadratic Kappa (κ) on

the validation set. In all cases, we use the Adam Optimizer with a learning
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rate of 10−2 and a batch size of 128. Based on the experimental results (see

Sect. 5.1), we fixed a value of 512 inducing points, which provides a good

trade-off between the generalization and complexity of the model, for all GP

based methods. SVGP is implemented using GPflow 1.2.0 and is run on an

NVIDIA GeForce RTX 3090 GPU. The code will be released in GitHub upon

acceptance of the paper.

Label aggregation. We utilize and compare Majority Voting (MV), DS

[28], MACE [30], and GLAD [29] aggregation methods to curate the multiple

noisy labels available in the CrowdGleason dataset. The aggregated labels

can be used as the single ground-truth label and, therefore, used by super-

vised learning methods. All methods, implemented in the popular Python

library for crowdsourcing tasks crowd-kit [41], are run with the default hyper-

parameters. The aggregated labels and the features extracted by ResNet18

are fed to SVGP to learn a GG classifier.

Crowdsourcing models. We utilize, as an enhancement of the label ag-

gregation methods, the learning from crowds model based on GPs, SVGPCR

[7]. This model extends the GPs to the crowdsourcing scenario and jointly

learns the expertise of the annotators and the GP classifier. The main as-

sumption is that multiple annotators provide noisy labels that are corrupted

observations of the ground-truth label. This corruption is modeled with a

confusion matrix for each annotator, which reflects the probability of provid-

ing a given label for each ground-truth class (as in the DS model [28]). Once

trained, the model can predict ground-truth labels in unseen instances using

the GP classifier.

Furthermore, we analyze how crowdsourcing labeled datasets can be used

18



in conjunction with expert labeled datasets to learn a classifier. For this

purpose, we use the SVGPMIX model [14]. This model, used here for the

first time in medical imaging, generalizes SVGPCR to cases where labels have

been provided either by a noisy annotator or by an expert. We utilize this

model to study the combination of CrowdGleason with SICAPv2. SVGPCR

and SVGPMIX use the same training procedure and software framework as

supervised GPs.

Evaluation Metrics. To assess the quality of the learned models, we

report the numerical results of three different metrics: Accuracy, Cohen’s

Quadratic Kappa (κ), and the F1-score. The accuracy is the rate of success

of the classifiers. The F1 can be defined per class as the harmonic mean

between precision and recall. We only report multiclass F1, which can be

defined as the average across class-wise F1. Recall that this score is of special

importance in imbalanced scenarios, which are common in medical imaging.

Finally, the κ score is increasingly popular for GG assessment [20, 42, 21, 43].

It measures the level of agreement between the output of the classifier and the

ground-truth label [44]. We can also use it to measure the agreement between

annotators. The κ metric ranges from -1 to 1, being directly proportional

to the level of agreement between observers (-1 complete disagreement, 0 no

agreement beyond what would be expected by chance, 1 total agreement).

It is commonly argued that a moderate agreement is achieved if κ is higher

than 0.6, whereas a strong agreement is attained when κ is higher than 0.8.

Furthermore, this metric also penalizes disagreements depending on class

differences (in a quadratic manner). For example, a disagreement between

classes NC and G5 implies a stronger penalization than between classes NC
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Figure 3: Variation of the F1 and Kappa scores with the number of inducing points for

the SVGP model trained on the SICAPv2 dataset. These results are reported on the

validation set.

and G3.

5. Experimental Results

In this section, we report the results of a set of experiments. They com-

pare different GP-based approaches that learn from expert labels, crowd-

sourcing labels, and a combination of both.

5.1. Experiment 1: Expert labels

In this experiment, we present the results of models trained on expert

SICAPv2 labels. The model is validated using the validation set of SICAPv2.

For comparison purposes, we also train the CNN-based method ResNet18

with the same data.

To select the number of inducing points for the SVGP method, we run

the method with several values: 64, 128, 256, 512, and 1024. Figure 3 shows
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Table 6: Results of the methods trained on SICAPv2 (expert labels) when tested on

SICAPv2 and CrowdGleason test sets.

SICAPv2 CrowdGleason

Method Accuracy F1 score Kappa Accuracy F1 score Kappa

ResNet18 0.7648 ± 0.0102 0.7145 ± 0.0143 0.6611 ± 0.0149 0.8839 ± 0.0122 0.6698 ± 0.0317 0.7095 ± 0.0426

SVGP-SICAP 0.7515 ± 0.0048 0.6912 ± 0.0119 0.7736 ± 0.0139 0.8736 ± 0.0075 0.6628 ± 0.0061 0.6583 ± 0.0220

Table 7: Results of the methods trained on CrowdGleason (crowdsourcing labels) when

tested on SICAPv2 and CrowdGleason test sets

SICAPv2 CrowdGleason

Method Accuracy F1 score Kappa Accuracy F1 score Kappa

ResNet18-MV 0.5910 ± 0.0568 0.5251 ± 0.0694 0.4139 ± 0.0763 0.8815 ± 0.0149 0.6791 ± 0.0316 0.6958 ± 0.0415

SVGP-DS 0.4960 ± 0.0233 0.4345 ± 0.0282 0.4965 ± 0.0283 0.8402 ± 0.0121 0.5499 ± 0.0360 0.6152 ± 0.0236

SVGP-MACE 0.4980 ± 0.0212 0.4345 ± 0.0263 0.4759 ± 0.0347 0.8486 ± 0.0070 0.5363 ± 0.0300 0.5574 ± 0.0325

SVGP-GLAD 0.4909 ± 0.0256 0.4342 ± 0.0344 0.5052 ± 0.0533 0.8539 ± 0.0091 0.5410 ± 0.0260 0.5776 ± 0.0338

SVGP-MV 0.6861 ± 0.0138 0.6331 ± 0.0169 0.6242 ± 0.0277 0.8649 ± 0.0016 0.6287 ± 0.0123 0.6576 ± 0.0086

SVGPCR 0.7123 ± 0.0072 0.6850 ± 0.0075 0.6953 ± 0.0176 0.9023 ± 0.0037 0.7068 ± 0.0142 0.7048 ± 0.0207

that the F1 and Kappa scores are stable in the SICAPv2 validation set across

different numbers of inducing points. This result means that the information

can be summarized in a few points of the feature space, and adding more

flexibility does not improve the performance. Furthermore, we can see that

a large number of inducing points does not lead to overfitting. Hence, we

fix a value of 512 inducing points for all experiments as a trade-off between

complexity and generalization capability.

Table 6 shows the results of the SVGP method trained on SICAPv2 (de-

noted as SVGP-SICAP) tested on the SICAPv2 and CrowdGleason curated

test sets. Additionally, Table 6 includes the test results of the end-to-end

trained ResNet18 network for comparative analysis. The SVGP-SICAP clas-

sifier achieves better figures-of-merit for the Kappa score in SICAPv2 than

using ResNet18 and is competitive in the rest of the metrics.
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Table 8: Results of the methods trained on SICAPv2 and CrowdGleason (expert and

crwodsourcing labels, respectively) combined when tested on SICAPv2 and CrowdGleason

test sets.

SICAPv2 CrowdGleason

method Accuracy F1 score Kappa Accuracy F1 score Kappa

ResNet18-MV 0.7743 ± 0.0056 0.7216 ± 0.0152 0.6748 ± 0.0085 0.8804 ± 0.0192 0.6843 ± 0.0355 0.7042 ± 0.0381

SVGP-MV 0.6861 ± 0.0138 0.6331 ± 0.0169 0.6242 ± 0.0277 0.8649 ± 0.0016 0.6287 ± 0.0123 0.6576 ± 0.0086

SVGPMIX 0.7660 ± 0.0056 0.7137 ± 0.0119 0.7814 ± 0.0083 0.9027 ± 0.0096 0.7176 ± 0.0270 0.7276 ± 0.0260

5.2. Experiment 2: Crowdsourcing labels

In this experiment, we train the methods with the CrowdGleason dataset.

The dataset is split into 13824 training samples and 2327 validation samples.

For validation, we use the MV strategy for aggregating the labels.

We first use different label aggregation strategies (DS, MACE, GLAD,

and MV) to train the SVGP classifier. Note that the input features, as we

have already indicated, are extracted using ResNet18 trained on SICAPv2.

Results in Table 7 show that MV produces the best result among the label

aggregation strategies followed by DS. For comparison purposes, we also re-

port the results on ResNet18 trained end-to-end with the MV labels. Finally,

we report the results of the SVGPCR method trained with the crowdsourcing

labels of CrowdGleason. From Table 7 it is clear that SVGPCR outperforms

the rest of the methods in the literature in both datasets. The MV aggre-

gation strategy can reduce the bias of the annotations but the noisy labels

hinder the classifier’s performance.

5.3. Experiment 3: Combining expert and crowdsourcing labels

Until now, information from experts and crowds was not used simulta-

neously. In this experiment, we explore the possibility of enhancing expert-
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labeled datasets with crowdsourcing-labeled ones. We add the CrowdGlea-

son training set to the SICAPv2 training set for this purpose. For super-

vised methods (SVGP and ResNet18), we consider MV aggregation, since it

achieved the best results in experiment 2. All methods use SICAPv2 as the

validation set since it already provides ground-truth labels.

Results are shown in Table 8. SVGPMIX outperforms the competing

methods on the SICAPv2 and CrowdGleason test datasets, showing that

the combination of expert and crowdsourcing labels is feasible and ben-

eficial. Although ResNet18-MV achieves a slightly higher F1 score value

than SVGPMIX on SICAPv2 (F1=0.7137±0.0119 vs. F1=0.7216±0.0152),

its Kappa value is much lower (κ = 0.6748 ± 0.0085) compared to SVGP-

MIX (κ = 0.7814 ± 0.0083). We observe a similar behavior in the SVGP-

MV performance. We believe that this is due to the presence of noisy la-

bels in the combined dataset. In contrast, SVGPMIX achieves a satisfying

Kappa value on the SICAPv2 (κ = 0.7814 ± 0.0083) and CrowdGleason

(κ = 0.7276± 0.0260) datasets, demonstrating its robustness.

To assess the statistical significance of our results, we apply the Almost

Stochastic Order (ASO) test [45, 46] (implemented in the deep significance

library1) on the five random runs of both SVGP-SICAP and the proposed

SVGPMIX models. The test was performed on the F1 score metric since

it takes into account the imbalanced scenario presented in this paper. The

ASO test outputs a value between 0 and 1 indicating the degree of violation

in stochastic order, where a value below 0.5 indicates that the SVGPMIX

1https://deep-significance.readthedocs.io/en/latest/
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model performs statistically better than SVGP-SICAP. Using ASO with a

confidence level α = 0.05, we found the score distribution of SVGPMIX to be

stochastically dominant over SVGP-SICAP (ϵmin = 0.0615 in SICAPv2 and

ϵmin = 0.0 in CrowdGleason). In conclusion, the proposed CrowdGleason

dataset outperforms the model trained on SVGP-SICAP.

5.4. Ablation studies on the quality of the labels and the number of annotators

We have seen how well the models perform on the test set but have not

analyzed in-depth the role of the non-expert annotators in the crowdsourcing

model. In this subsection, we provide an ablation study on the crowdsourc-

ing models, highlighting the impact of crowdsourced annotations into the

final performance. First, we assess the effect of experience on pathologists

in training by dividing them into two groups: junior (residents in their first

or second year) and senior (third or fourth year residents). We train the

SVGPCR model using the same configuration as in previous experiments,

but in two different settings: (i) using only samples labeled by junior par-

ticipants and (ii) using only samples labeled by senior participants. This

experiment is conducted over five independent runs. The results are shown

in Figure 4 which includes the mean performance and 0.95 CI. The perfor-

mance is comparable across both datasets; however, the model trained with

junior-labeled samples performs better on the CrowdGleason dataset, while

the model trained with senior-labeled samples excels in the SICAPv2 dataset.

Since the junior residents were specifically trained using the CrowdGleason

dataset, the model trained with their annotations tends to overfit. In con-

trast, the senior participants, with greater experience, are able to recognize a

broader range of patterns, allowing the model to generalize more effectively
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to the SICAPv2 dataset.

Secondly, in the ablation study on the number of annotators, we investi-

gate how many annotators are sufficient to achieve a satisfactory crowdsourc-

ing model. For this, we trained the SVGPCR model with varying numbers of

annotators. For each number of annotators, we performed eight independent

runs, randomly sampling different subsets of annotators. For each subset,

we run the models five times to ensure stability and consistency. Figure 5

illustrates the results for the SICAPv2 and CrowdGleason datasets, show-

ing the mean performance, the 95% CI, and the SVGPCR performance with

all annotators. As we increase the number of annotators, the CI narrows,

indicating that the models become more stable and less dependent on the

specific annotators selected. On both test datasets, the performance of the

models trained with subsets of annotators overlaps with that of the model

trained with all annotators. This suggests that fewer annotators can achieve

comparable performance. Overall, for this experiment, about five annota-

tors appear sufficient to achieve satisfactory results, although increasing the

number of annotators leads to a more stable performance since the results

are highly influenced by the expertise of the selected annotators.

5.5. Ablation study on the impact of expert label datasets in the crowdsourc-

ing scheme

This section analyzes the impact of the expert labels from SICAPv2 on

the SVGPMIX model. We investigate how many expert-labeled samples are

necessary to achieve a robust SVGPMIX model. For this, we trained the

SVGPMIX model using CrowdGleason and different proportions of expert-

labeled samples from SICAPv2. For each proportion, we performed eight in-
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Figure 4: Results of the SVGPCR model trained with labels provided by junior partici-

pants (first and second year) or senior participants (third and fourth year).
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Figure 5: Results of the SVGPCR model varying the number of annotators.
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Figure 6: Results of the SVGPMIX model varying the proportion expert-labeled samples

from SICAPv2.

dependent runs, randomly sampling different subsets of expert-labeled data.

For each sampled dataset, we run the model five times to ensure stability

and consistency. Figure 6 illustrates the results for each dataset, showing

the mean performance, the 95% CI, and both SVGPMIX and SVGP-SICAP

performance with all expert-labeled samples.

Unlike crowdsourced-labeled samples, increasing the number of expert-

labeled samples does not significantly narrow the CI, as expert labels tend

to have less variability and are inherently more robust. Notably, when 10%

of the expert samples are used, the model stabilizes (and also surpasses the

results from SVGP-SICAP in the SICAPv2 dataset), indicating that the

samples are highly informative for training the crowdsourcing model. Be-

yond this point, adding more samples does not provide additional benefits,

demonstrating that the model can perform effectively with a relatively small

amount of expert data.
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5.6. Analysis of annotator behavior

We measure the performance of each non-expert annotator by means

of the Kappa score. The figures-of-merit, shown in Table 9, indicate the

degree of agreement between each annotator and the curated test set. The

best-performing annotator is A4 (κ = 0.7765), while A7 presents the lowest

agreement (κ = 0.0899). The disparity of performance among annotators

highlights the crowd heterogeneity and complexity of the task.

We further depict the per-class behavior of the annotators in Figure 7.

The confusion matrices are normalized row-wise for better visualization and

comparison purposes. These matrices can be understood as an estimation

(on the test set) of the annotators’ expertise. The crowdsourcing methods

aim to estimate these confusion matrices from the noisy labeled training set.

Recall that the ground-truth labels are not observed for these models. Fig-

ures 8 and 9 show the estimated confusion matrices estimated by SVGPCR

and SVGPMIX, respectively. These matrices closely approximate the anno-

tators’ behavior, emphasizing the excellent performance of the crowdsourcing

methods.

6. Discussion

Our experiments have shown (see Tables 6 and 7) that SVGP improves

the performance of ResNet18 tested on SICAPv2 and is competitive or out-

performs ResNet18 when tested on the new CrowdGleason. These results

confirm the potential of GPs to perform GG classification. The SVGPCR

classifier, used in the learning from crowds framework, achieved a value of

κ = 0.7048±0.0207 and κ = 0.6953±0.0176 on CrowdGleason and SICAPv2
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Table 9: Cohen’s Quadratic Kappa (κ) coefficient of non-expert annotators on the Crowd-

Gleason curated test set.

A1 A2 A3 A4 A5 A6 A7

κ 0.4120 0.6283 0.5394 0.7765 0.7040 0.6520 0.0899

test sets, respectively (see Table 7), outperforming label aggregation strate-

gies, such as MV, DS, MACE, and GLAD. The best label aggregation model

(i.e., MV) obtains κ = 0.6576 ± 0.0086 and κ = 0.6242 ± 0.0277 (see Ta-

ble 7) for CrowdGleason and SICAPv2 test sets, respectively. This signifi-

cant difference highlights the enormous impact of noisy labels provided by

non-expert annotators on the models performance and the need to use a

suitable model to learn from crowds. Furthermore, the SVGPCR results are

competitive with SVGP trained on SICAPv2 with expert labels that obtain

κ = 0.6583 ± 0.0220 and κ = 0.7736 ± 0.0139 (see Table 6). Regarding the

F1 metric, SVGPCR can even improve the performance of SVGP trained

with expert labels on both test datasets. These results align with previous

works in crowdsourcing ([12, 15, 16, 18]), and validate the use of the proposed

CrowdGleason dataset for further studies on crowdsourcing and GG.

We have also explored the combination of the SICAPv2 dataset with our

dataset. Recall that learning a model with samples from two different centers

is difficult due to the heterogeneity between samples and labels. Additionally,

noisy labels from non-expert annotators introduce noise into the dataset,

which worsens the classifier performance. See, for instance, the decrease

from κ = 0.7736 ± 0.0139 of SVGP-SICAP in Table 6 to κ = 0.6242 ±

0.0277 of SVGP-MV in Table 8. In this work, we propose using SVGPMIX
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to address this issue. SVGPMIX extends SVGPCR to the scenario where

some labels are given by one expert and the rest are given by multiple non-

experts. In this case, SVGPMIX improves the results of both SVGP-SICAP

and SVGPCR on both datasets (see Table 8). Specifically, it achieves κ =

0.7276 ± 0.0260 and κ = 0.7814 ± 0.0083 on CrowdGleason and SICAPv2,

respectively. Remarkably, SVGPMIX achieves stable results with only 10%

percent of samples labeled by expert pathologists. The results obtained by

both SVGPCR and SVGPMIX are within the range of results reported in

the literature for GG classification. For example, Marrón-Esquivel et al. [42]

reported κ = 0.826, Xiang et al. [47] reported κ = 0.81 and Arvaniti et al.

[21] reported κ = 0.49 and κ = 0.53 for two different pathologists.

During the study, we have observed great variability between annotators

that is even more accentuated when they have little experience in the area.

Table 9 shows that the results obtained by non-experts in the CrowdGleason

curated test set are very dissimilar ranging from κ = 0.09 to κ = 0.78. In

general, we observe a lower mean agreement with the test set (κ = 0.5432)

than that observed in other works involving only expert pathologists. For

example, in [42] the authors reported κ = 0.6946 among expert pathologists,

and in [21] two expert pathologists scored κ = 0.71. The annotators classi-

fied non-cancerous patches relatively well, but had more confusion between

classes G3 and G4 (see Fig. 7). SVGPCR and SVGPMIX automatically es-

timate these confusion matrices from the noisy training data. The results

in Figures 8 and 9 show that the estimated matrices capture the behavior

of the noisy annotators. For instance, both models capture the higher sen-

sitivity in the G4 and G5 grades of annotator 7. Furthermore, these models
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Figure 7: Normalized confusion matrices of the seven annotators in the CrowdGleason

curated test set.
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Figure 8: Estimated confusion matrices for the seven annotators by the SVGPCR model.
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Figure 9: Estimated confusion matrices for the seven annotators by the SVGPMIX model.
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also capture the behavior of the annotators when labeling samples as ’NC’.

The models correctly estimate that annotators 1 and 7 have the lowest sen-

sitivity in this class (as seen in Fig. 7). Note also that SVGPCR achieves a

better concordance (Kappa value) on the test set than most pathologists in-

training, as seen in Tables 7 and 9. This means that SVGPCR outperforms

each pathologist in-training individually. As an additional result, SVGPCR

trained with less experienced annotators tends to overfit more to the Crowd-

Gleason dataset, see Figure 4. This may be due to the lack of specific training

in prostate cancer for less experienced participants.

Our crowdsourced dataset, CrowdGleason, serves as a valuable bench-

mark for training models that should be robust to label noise and high inter-

observer variability. It can also be used to study types of errors and class

confusions among non-expert pathologists. As demonstrated in our paper,

this dataset can enhance previous models trained on expert-labeled data,

leading to improved generalization. However, the main disadvantage of us-

ing our dataset is the high level of label noise; employing standard supervised

models with these labels will likely result in poor performance. Therefore, it

is crucial to use appropriate machine learning models designed to learn from

crowds, as outlined in our study. These models can be further enhanced by

incorporating feature-dependent information on the annotators, as they may

be more prone to making errors when specific features are present. These

include architectural characteristics such as gland size, arrangement in group-

ings and/or fusions, appearance of lumens, and loss of basal cells. Nuclear

characteristics include nuclear size, staining intensity, size and number of nu-

cleoli, or presence of mitosis. Cytoplasmic characteristics involve their shape,
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quantity, and staining. Luminal characteristics may include the presence of

different materials.

7. Conclusions

In this work, we propose a novel crowdsourcing protocol to scale up the

labeling of prostate histopathological images. As a result, we present the new

CrowdGleason dataset labeled by seven pathologists in-training at the patch

level. To the best of our knowledge, this is the most extensive dataset with

patch-level annotations and the first with non-expert annotations for PCa.

We conducted comprehensive experiments utilizing this new dataset and the

previous SICAPv2, labeled by a PCa expert pathologist.

Despite the high disagreement between non-expert annotators, experi-

ments show that crowdsourcing methods trained with the proposed Crowd-

Gleason obtain competitive results against using expert labels on different

test sets. Remarkably, the learning from crowds method performs better

than most of the pathologists in-training on the test set. We have demon-

strated that while results from five non-expert annotators are satisfactory,

the performance becomes more stable as the number of annotators providing

labels increases.

We have also proposed a method to augment SICAPv2 with the proposed

CrowdGleason dataset and achieved better results than those obtained using

only one dataset. Furthermore, we have shown that the combined model

requires only 10% of expert-labeled samples to achieve a satisfactory perfor-

mance. The combination of a small number of expert and non-expert labels

paves the way for future large-scale labeling efforts by integrating both ex-
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pert and non-expert pathologist annotators. CrowdGleason can be leveraged

in future works for training or validating methods and augmenting existing

datasets.

Although this work presents important findings and motivates the use of

crowdsourcing to scale up the labeling of histopathological datasets, there

are still very interesting open research questions. For example, how large

the dataset has to be, how many samples have to be annotated by each an-

notator or how large and diverse the pool of participants has to be. Also,

the presented methods for learning from crowds estimate a confusion matrix

per annotator. However, it is not feature-dependent (i.e., architectural, nu-

clear, cytoplasmic, or luminal characteristics). A valuable future direction is

to study how these features influence non-expert behavior in PCa diagnosis

and use this information within the crowdsourcing model.
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[7] P. Morales-Álvarez, P. Ruiz, S. Coughlin, R. Molina, A. K. Katsaggelos,

Scalable variational Gaussian processes for crowdsourcing: Glitch de-

tection in LIGO, IEEE Transactions on Pattern Analysis and Machine

Intelligence 44 (3) (2022) 1534–1551.

[8] H. Irshad, L. Montaser-Kouhsari, G. Waltz, O. Bucur, J. Nowak,

F. Dong, N. W. Knoblauch, A. H. Beck, Crowdsourcing image annota-

tion for nucleus detection and segmentation in computational pathology:

evaluating experts, automated methods, and the crowd, in: Pacific Sym-

posium on Biocomputing Co-chairs, World Scientific, 2014, pp. 294–305.

[9] J. Lawson, R. J. Robinson-Vyas, J. P. McQuillan, A. Paterson,

S. Christie, M. Kidza-Griffiths, L.-A. McDuffus, K. A. Moutasim, E. C.

37



Shaw, A. E. Kiltie, et al., Crowdsourcing for translational research: anal-

ysis of biomarker expression using cancer microarrays, British Journal

of Cancer 116 (2) (2017) 237–245.

[10] C. K. Williams, C. E. Rasmussen, Gaussian processes for machine learn-

ing, Vol. 2, MIT Press Cambridge, MA, 2006.
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